Bivalent Disulfide-stabilized Fragment Variable Immunotoxin Directed against Mesotheliomas and Ovarian Cancers

Tapan K. Bera, Juanita Williams-Gould, Richard Beers, Partha Chowdhury, and Ira Pastan
Laboratory of Molecular Biology, National Cancer Institute, NIH, Bethesda, Maryland 20892-4255

Abstract
We have used protein engineering to generate a stable bivalent fragment variable (Fv) molecule from the antimesothelin antibody SS, in which the V_H and V_L domains of the Fv are linked to each other by a disulfide bond, and the two Fvs are connected by a flexible 15-amino acid (Gly4-Ser)3 linker. The SS (dsFv)2 molecule is fused to a M, 38,000 truncated form of Pseudomonas exotoxin to generate a bivalent, disulfide stabilized, (dsFv)2 immunotoxin. The immunotoxin was expressed in Escherichia coli, refolded in vitro, and purified to >95% purity with a high yield of >10%. Binding studies demonstrated that the (dsFv)2 molecule has 40 times higher apparent affinity for recombinant mesothelin than a monovalent dsFv molecule. The (dsFv)2 immunotoxin was 4–10-fold more cytoxic to three mesothelin antigen-positive cell lines than the monovalent dsFv immunotoxin. However, when tested in mice bearing tumor cells expressing mesothelin, the antitumor activity of the bivalent immunotoxin is very similar to the activity of the lower affinity monovalent immunotoxin. Our data indicate that increasing affinity of an antibody fragment does not necessarily lead to higher antitumor activity of an immunotoxin in vivo.

Introduction
Differentiation antigens, which are also expressed on cancer cells, are good targets for immunotherapy, in particular if the cancer arises from dispensable tissues such as ovary, breast, prostate, and B or T cells. Monoclonal antibodies that recognize such antigens on cancer cells are now being used for the targeted therapy of cancer. One of these, BL22 that targets the CD22 molecule on B-cell tumors, has produced many compromises in drug-resistant hairy cell leukemia (1). Fv2 fragments of antibodies are heterodimers made up of the antibody variable regions of heavy and light chain (V_H and V_L) domains and are the smallest antibody fragments that contain all of the structural information necessary for specific antigen binding. Because small molecules penetrate tumors much faster than large molecules, Fv fragments are particularly useful in applications that require rapid tissue or tumor penetration (2, 3).

Although the Fvs are the smallest functional modules that confer specific antigen binding, they lack one vital property of the whole antibody. The Fvs are monovalent as compared to a bivalent IgG or even a decavalent IgM. As a result, the avidity of multivalent antibodies is higher than that of corresponding Fvs. Sometimes the bivalent interaction between the antigen and the antibody contributes to the internalization of the antigen antibody complex. Recently, we have described a new approach to generate a (dsFv)2 of a monoclonal antibody that binds to its antigen with higher affinity (4). In this approach, the V_H and V_L domains of the Fv are linked to each other by a disulfide bond, and two Fvs are connected by a flexible 15-amino acid residue. To determine the applicability of the method to generate bivalent Fv for other antibodies, we used Fvs from the antibody SS directed against the mesothelin antigen expressed on ovarian cancer and mesotheliomas.

Here, we describe the generation of a stable bivalent Fv in which the V_H and V_L domains of the antimesothelin antibody SS (5) are covalently linked to each other by a disulfide bond and two Fvs are associated by a 15-amino acid linker. In contrast to our previous report (4), the final yield of the purified bivalent immunotoxin is much higher. We report here the binding affinity and in vitro cytotoxicity activity of the bivalent molecule and compare it with its monovalent counterpart. We also describe the pharmacokinetic behavior and the antitumor activity of the SS bivalent immunotoxin.

Materials and Methods
Plasmid Constructions. The plasmid pTKB25.10 that encodes two Cys45 V_H domains separated by a 15-amino acid linker, fused to PE38, was generated by PCR using the pSS VH plasmid as the PCR template as described in detail in Fig. 1. The primer T178, 5'-ATC TCT TAA GCT TCA GGC GGA GGC GGA TCA GGT GGT GGC GGA TCT GGA GGT GGC GGA TCT GCA GGT TGC GGT GGC GGA GGC TCA GGT GGT GGC GGA GGC TCA GCA CAG GTA CAA CTG CAG CAG TCT TGG GAG GGA GAC GGT GAC CGT GGT CCG TCG CGT CCG CCC TTG GCG-3' was used to provide the 15-amino acid linker (Gly4-Ser)3 in between two V_H and the cloning site HindIII (the HindIII site underlined). The 3' primer T179, 5'-GGT CCA AGC TTT TGA GGA GAC GGT GAC CGT GGT CCG TCG CGT CCG CCC TTG GCG-3' was used to provide cloning site HindIII to the COOH-terminal half of V_L. Then primers T178 and T179 were added to the 100-nM final reaction mix and amplified for 25 cycles to obtain the Cys45 V_H domain containing the 15-amino acid linker at the NH2 terminus. High fidelity polymerase mix (Boehringer Mannheim) was used to avoid PCR errors. The resulting

Received 8/17/01; revised 10/2/01; accepted 10/5/01.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

To whom requests for reprints should be addressed, at Laboratory of Molecular Biology, National Cancer Institute, NIH, Bethesda, Maryland 20892-4264. Phone: (301) 496-4797; Fax: (301) 402-1344; E-mail: pasta@helix.nih.gov.

1. The abbreviations used are: Fv, fragment variable; dsFv, disulfide stabilized Fv; (dsFv)2, bivalent disulfide stabilized Fv fragment; HSA, human serum albumin; IBs, inclusion bodies; scFv, single-chain Fv; V_H and V_L, variable region of heavy or light chain; PE, Pseudomonas exotoxin.
fragment was cloned into the HindIII site of pSS VH, which codes for Cys45 VH fused to PE38, a truncated form of PE. The HindIII site fuses the inserted fragment in-frame to the Cys45 VH fragment of SS and the truncated toxin (6) in one of two possible orientations. The vector contains the T7 promoter for expression in Studier’s Escherichia coli BL21(DE3) expression system (7). The plasmid pSS VL encodes the VL domain of SS antibody and contains a Cys99 mutation. All expression plasmids were confirmed to be correct by DNA sequencing on an ABI 373A sequencer using the dideoxy chain terminator sequencing kit.

Production of Recombinant Protein. The components of SS (dsFv)2 and dsFv immunotoxins were expressed in E. coli BL21 (DE3) and accumulated in inclusion bodies (IBs) as described previously for other recombinant immunotoxins (8). IBs were solubilized in guanidine chloride, reduced with dithioerythritol and refolded by dilution in a refolding buffer containing arginine to prevent aggregation and oxidized and reduced glutathione to facilitate redox shuffling (9). Active monomeric protein was purified from the refolding solution by ion exchange and size exclusion chromatography to near homogeneity as described (9). Protein concentrations were determined by Bradford assay (Bio-Rad Coomassie Plus).

Binding and Cytotoxicity Assays. The affinities of SS (dsFv)2 and dsFv immunotoxins were assayed and compared by surface plasmon resonance (BIAcore; Pharmacia Biosensor). Recombinant mesothelin protein was coupled to BIAcore sensor chips (CM5, research grade, Pharmacia Biosensor) according to the manufacturer’s specifications. The dsFv and (dsFv)2 immunotoxins were applied to the chips, and binding and dissociation (kass and kdis) were determined from association and dissociation curves of the sensorgrams with the BIAevaluation software package (Pharmacia Biosensor). K_{D} at equilibrium was calculated as K_{D} = k_{dis}/k_{ass}.

The specific cytotoxicity of the SS (dsFv)2 and dsFv immunotoxins was assessed by protein synthesis inhibition assays (inhibition of incorporation of tritium-labeled leucine into cellular protein) in 96-well plates as described previously (10). The activity of the molecule is defined by the IC_{50}, the toxin concentration that reduces incorporation of radioactivity by 50% compared with cells that were not treated with toxin. The specificity is obtained by comparing the activity toward antigen-positive cells versus toxicity against antigen-negative cells.

Pharmacokinetic Analysis of Bivalent SS dsFv Immunotoxin in Mice. BALB/c mice were injected with 10 μg of immunotoxin in the tail vein. At various time intervals, blood samples were collected, and the level of the active immunotoxin was measured by the cytotoxicity assay using A431/K5 cells as described earlier. A standard curve was made with each pure immunotoxin. The data were analyzed by an exponential curve fitting program RSTRIP (version 5; MicroMath Scientific Software).

Antitumor Activity of Bivalent SS Immunotoxin in Nude Mice. The antitumor activity of bivalent SS immunotoxin was determined in athymic nude mice bearing A431/K5 tumors. A431/K5 cells (3 × 10^{6}) were injected s.c. on day 0 into athymic nude mice, and treatment was started at day 7 when the tumors measured ~157 mm³. Each mouse received three doses of immunotoxin on days 7, 10, and 13 by i.v. injection. Each group consisted of four animals. The control group received only the diluent, which is 0.2% HSA in Dulbecco’s PBS. Tumors were measured with a caliper every other day; the volume of the tumor was calculated using the formula: tumor volume (mm³) = length × (width)^2 × 0.4.

Stability Assays. The stability of the SS (dsFv)2 and dsFv immunotoxins was determined by incubating them at 10 μg/ml at 37°C in HSA (4). Active immunotoxin remaining after incubation was determined by cytotoxicity assays on A431/K5 cells.

Fig. 1. Plasmid maps and schematic representation of immunotoxin. A, the parental plasmid pSS VH encodes for the SS VH-PE38 fusion protein in which Ser44 of the SS VH is mutated to Cys in the framework region. The expression plasmid pTKB25.10 encodes two SS VH domains that are fused in-frame to PE38 toxin. Both VH domains have a Ser44 to Cys mutation and are held together by a 15-amino acid (Gly4-Ser)₃ linker. The expression plasmid pSS VL encodes for the VL domain of SS, which has a Gly99 to Cys mutation. B, schematic of a monovalent and bivalent disulfide-stabilized Fv immunotoxin.

3 P. Chowdhury and I. Pastan, unpublished data.
Results

The goal of the present study is to make a recombinant bivalent Fv molecule using the antimesothelin antibody SS. Because our laboratory is interested in developing immunotoxins using cancer-specific antibodies, better binding of the antibody to the antigen should translate into better activity of the immunotoxin.

Production of Bivalent SS dsFv Immunotoxin. E. coli BL21 (DE3) cells containing the plasmids pTKB25.10 and pSS VL for expression of the components of SS(dsFv) 2 immunotoxin were grown and induced with isopropyl-D-thio-galactopyranoside separately (4). The fusion proteins accumulated in insoluble intracellular IBs. These IBs contain almost pure recombinant protein but in an insoluble and aggregated form. Refolded, soluble monomeric protein was purified from improperly folded proteins and minor bacterial contaminants by ion exchange (Q-Sepharose, MonoQ) and size exclusion chromatography to near homogeneity (Fig. 2). The final yield of the purified protein is >10% of the starting inclusion body protein.

Cytotoxicity of Monovalent and Bivalent SS Immunotoxin toward Cell Lines Expressing Mesothelin Antigen. PE38 is a truncated but an enzymatically active form of PE (11). Fusion proteins of antibody fragments with PE38 are cytotoxic to cells that bind and internalize the fusion protein but have very low cytotoxic activity to antigen negative cells. Thus, cytotoxicity reflects specific antigen binding. To test the specificity of the bivalent SS immunotoxin, we analyzed and compared the activity of SS dsFv and (dsFv) 2 immunotoxins toward different antigen-positive and antigen-negative cell lines. The cell lines we tested were A431/K5, an epidermoid carcinoma cell line transfected with full-length mesothelin cDNA (5), and also mesothelin-positive cancer cell lines N87, AGS, and A1847. A431 is an antigen-negative cell line. The bivalent immunotoxin is ∼7-fold more active on A431/K5 cells as compared with the monovalent immunotoxin (Table 1). The IC 50 s of the (dsFv) 2 immunotoxin is 2.5 pmol, whereas the IC 50 s for the dsFv immunotoxin is 18 pmol. On N87 cells, the (dsFv) 2 immunotoxin is 10-fold more active than the dsFv immunotoxin, and the IC 50 s are 18 and 180 pmol, respectively. The (dsFv) 2 immunotoxin is also four times more active on AGS cells, where the IC 50 s for (dsFv) 2 and dsFv immunotoxin are 23 and 90 pmol, respectively. A1847 cells, which are also mesothelin antigen positive, have similar IC 50 s for both the (dsFv) 2 and dsFv immunotoxin, whereas the antigen-negative A431 cells are not affected by either of the two immunotoxins at >7770 pmol (Table 1).

Table 1 Specific cytotoxicity of SS dsFv and (dsFv) 2 immunotoxins

<table>
<thead>
<tr>
<th>Cell line</th>
<th>Meso-antigen</th>
<th>IC 50, pmoles</th>
</tr>
</thead>
<tbody>
<tr>
<td>A431/K5</td>
<td>-</td>
<td>>7770</td>
</tr>
<tr>
<td>N87</td>
<td>+++</td>
<td>18</td>
</tr>
<tr>
<td>AGS</td>
<td>+</td>
<td>180</td>
</tr>
<tr>
<td>A1847</td>
<td>+</td>
<td>90</td>
</tr>
<tr>
<td>A431</td>
<td>-</td>
<td>>7770</td>
</tr>
<tr>
<td>A1847</td>
<td>+</td>
<td>120</td>
</tr>
<tr>
<td>AGS</td>
<td>-</td>
<td>82</td>
</tr>
<tr>
<td>A431</td>
<td>+</td>
<td>7770</td>
</tr>
<tr>
<td>N87</td>
<td>+</td>
<td>180</td>
</tr>
<tr>
<td>A1847</td>
<td>+</td>
<td>90</td>
</tr>
<tr>
<td>A431</td>
<td>-</td>
<td>>7770</td>
</tr>
</tbody>
</table>

*Antigen density was measured by immunofluorescence using K1 antibody (5). ++++, high; ++, medium; +, low; --, no expression of mesothelin.

Binding of SS (dsFv) 2 on Recombinant Mesothelin Protein. To determine the affinity (or avidity) of the immunotoxins, we used the BioCore assay method. The binding affinities of SS dsFv and SS (dsFv) 2 immunotoxin were determined by a surface plasmon resonance assay on recombinant mesothelin protein. For the BioCore assays, recombinant dsFv or (dsFv) 2 immunotoxins were applied to recombinant mesothelin-coated sensor chips. A determination of association and dissociation rates revealed a K_{ass} of 5.21×10^8 M$^{-1}$ s$^{-1}$ for the dsFv and 1.16×10^8 M$^{-1}$ s$^{-1}$ for the (dsFv) 2 (Table 2). The dissociation rates of the dsFv is 18-fold higher than the (dsFv) 2 toxin with a k_{dis} of 5.49×10^{-3} s$^{-1}$ for the dsFv and 3.13×10^{-4} s$^{-1}$ for the (dsFv) 2. The K_D at binding equilibrium, $(K_D = ka/kd)$, is 10.5 nM for the dsFv and 0.26 nM for the (dsFv) 2 (Table 2). These data indicate that the bivalent dsFv of the SS antibody possesses 40-fold higher affinity than its monovalent counterpart.

Stability of the SS (dsFv) 2 Immunotoxin. Disulfide-stabilized Fv immunotoxins are very stable at 37°C in PBS containing 0.2% HSA (12). To analyze whether the SS (dsFv) 2 immunotoxin is stable, we incubated the immunotoxins at 37°C for different periods of time in PBS containing 0.2% HSA at a concentration of 10 μg/ml. Activity of the incubated immunotoxin was determined by a protein synthesis inhibition assay. The (dsFv) 2 immunotoxin retains 95% of its activity, even after 2 h incubation at 37°C in human serum.
Pharmacokinetics of Bivalent SS Immunotoxin in Mouse Blood. Generally the $t_{1/2}$ for both scFv and dsFv containing immunotoxins injected i.v. into mice is short and in the range of 20 min (13). To determine the $t_{1/2}$ of the bivalent SS immunotoxin in the mouse circulation, BALB/c mice were injected i.v. with a single 10-μg dose of dsFv or (dsFv)2 immunotoxin. Blood samples were drawn at specific time points. The level of immunotoxin was measured by bioassay in which triplicates of diluted serum samples were incubated with A431/K5 cells. Results are averages of three animals for each point from two independent assays performed on each immunotoxin; bars, SE. A, blood levels of (dsFv)2-PE38. B, blood levels for dsFv-PE38.

Antitumor Activity. To determine whether the improved in vitro cytotoxicity data could be translated in vivo as antitumor activity, the monovalent and bivalent SS dsFv-PE38 immunotoxins were assayed in tumor xenografts of A431/K5 cells in athymic nude mice. On day 7 when the tumors reached ~ 157 mm3, the animals were injected i.v. with 4 μg (45 pmol) of SS (dsFv)2-PE38 or 2.9 μg (45 pmol) of SS dsFv-PE38 every other day $\times 3$. A dose of immunotoxin was chosen that would produce regression and regrowth of tumors so that the difference in activity between monovalent and the bivalent immunotoxin could be assessed. The control groups received PBS containing 0.2% HSA. As shown in Fig. 4, control animals treated with 0.2% PBS-HSA developed large tumors and were sacrificed on day 21, when the tumors achieved about 1.5 × 2.0 cm in size. However, the tumors for both SS dsFv-PE38 and SS (dsFv)2-PE38 groups decreased to an unmeasurable size after two injections, but the tumors reappeared on day 11. There is no statistically significant difference of antitumor activity between the monovalent and bivalent SS immunotoxins at equimolar doses.

Discussion

In this report, we have constructed a recombinant bivalent Fv fragment of antibody SS, in which the γ_1/γ_2 heterodimer is stabilized by disulfide bond and the two Fvs are covalently connected by a flexible peptide linker. The bivalent Fv is then linked to a truncated form of PE to generate a very potent immunotoxin with significantly improved cytotoxicity and binding affinity compared with its monovalent counterpart. Several approaches have been used previously to generate recombinant bivalent Fvs by different laboratories. Also a variety of formats and protein designs have been investigated that include miniantibodies, diabodies, and disulfide-linked fragments (14–20). Our approach to generate a bivalent Fv is based on the fact that a dsFv is extremely stable, and therefore the resulting molecule would be very stable under physiological conditions. This is supported by our experimental results.
Compared with these other methods, this report further demonstrated that our approach to generate recombinant bivalent Fv fusion proteins is simple, results in homogenous and properly folded bivalent Fvs with a high yield, and can be used to generate bivalent Fv for different antibodies.

Bivalent SS Immunotoxin Has Improved Activity in Vitro. The cytotoxicity data described in Table 1 reveal that the bivalent SS immunotoxin has about 4–10-fold higher activity on three of the four mesothelin-expressing cell lines than the monovalent SS immunotoxin. The improved cytotoxicity of the bivalent immunotoxin is not evident on the A1847 mesothelin-positive cancer cell line. This could be attributable to the low number of mesothelin molecules on the surface of the A1847 cell line. However, when tested in mice, the antitumor activity of the bivalent SS immunotoxin against A431/K5 cells is more or less similar to the monovalent immunotoxin, although the bivalent immunotoxin is 7-fold more active than the monovalent immunotoxin on A431/K5 cells in vitro. There are several factors that determine the activity of a therapeutic agent in vivo. One important factor is the pharmacokinetic behavior of the agent in the circulation. But in this case, the bivalent immunotoxin remains for a longer period of time in the circulation than the monovalent immunotoxin. The most probable explanation for this discrepancy is that the higher affinity of the bivalent immunotoxin creates an affinity barrier (21, 22) and retards its penetration into the tumor cells distant from the capillary, where it enters the tumor mass. Other groups including ours (23–25) have previously observed retardation of tumor penetration attributable to high affinity or avidity of the antibodies. In all cases, the monovalent Fv or Fab fragments were as effective as the bivalent molecules at controlling tumor growth, despite the fact that bivalent molecules have much higher affinity toward their antigen and remained in the mouse circulation (an equal time or) longer than the monovalent Fv or Fab fragments.

In summary, our data indicate that by increasing affinity of an antibody fragment does not necessarily improve the antitumor activity of immunotoxins or other forms of immunotherapeutic agents.

Acknowledgments
We especially thank V. Fogg for cell culture and Anna Mazzuca for editorial assistance.

References

Molecular Cancer Therapeutics

Bivalent Disulfide-stabilized Fragment Variable Immunotoxin Directed against Mesotheliomas and Ovarian Cancer

Mol Cancer Ther 2001;1:79-84.

Updated version
Access the most recent version of this article at:
http://mct.aacrjournals.org/content/1/2/79

Cited articles
This article cites 25 articles, 11 of which you can access for free at:
http://mct.aacrjournals.org/content/1/2/79.full#ref-list-1

Citing articles
This article has been cited by 2 HighWire-hosted articles. Access the articles at:
http://mct.aacrjournals.org/content/1/2/79.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.